
Mapping general inference to physics

J. Shepard Bryan IV and Pressé Lab

Department of Physics, Arizona State University

April 26, 2024

Abstract

Here we attempt to map general inference to physics.

DISCLAIMER: This is a work in progress. Please excuse any typos or errors. Please also excuse
the lack of citations.

1 Introduction

It is well known that there is a fundamental connection between physics and learning. For example, recording
information requires energy [Landauer, Bechhoeffer, 1], the act of measurement unavoidably alters the measured
object [quantumtextbook, 1], and physical objects are known to be capable of learning [1]. Moreover, the whole
field of statistical mechanics is based on the concept of “incomplete information” [1], which requires the existence
of an observer capable of learning [maxwellsdemon, 1]. Recently, there has been interested in exploiting the
connection between physics and learning to better understand deep learning [1] and explore new models [hopfield,
1]. In this work, we expand upon this work by creating a direct mapping from general inference to physics.

The heart of what we would like to explore is as follows: Imagine actively measuring some unlabeled variables
over a long series of time steps, with the goal of predicting the value of each variable at the next time step. For
example, the measurements could be readouts from an experiment, values of nodes in a neural network, or states
(on or off) of neurons in a brain at a time step. How would one best simplify and make sense of this data? What
general inference algorithm would allow one to best predict future measurements, regardless of the form of the
object being measured?

Here, we create a mapping from this general inference problem to physics. In this paradigm, physical quantities
such as mass, charge, space, and spin are defined as statistical quantities of measured variables, and natural
constants such as the vacuum permittivity emerge as averaged error. Additionally, machine learning concepts such
as gradient descent optimizers are replaced with physics inspired dynamics laws. We show that this paradigm can
stably minimize prediction error. Moreover, our mapping has potential advantages over traditional physics based
inference models [hopfield, 1] because it allows for long range interactions between variables while minimizing the
number of model parameters.

2 Methods

Here we lay out the mathematical framework for our work mapping general inference to physics. We start by
presenting a graphical model for the general inference problem, starting with the most general case of fully connected
binary random variables, then making approximations to simplify the network. We then derive the loss function
for a prediction model on the network, decomposing the loss term into two parts: one governing the continuous
variables, and another governing the binary variables. We show that when the model is optimized (has minimal
error) this loss function effectively acts as a concerned quantity. We then show that careful choices of model
parameters lead to model parameter dynamics, i.e. the way in which model parameters are updated after each new
measurement, which are identical to electrodynamics and quantum mechanics.

1

Figure 1: Here, we present a graphical model for the general inference problem under three different cases. (A)
A fully connected network of binary random variables. (B) A fully connected mixture network of both binary
and continuous variables. (C) A network of fully connected continuous variables, but sparsely connected binary
variables.

2.1 Graphical model

Our first goal is to rigorously define the problem. Loosely speaking, we want to predict future measurements of a
system given a stream of past measurements. Let us start by defining the variables we are measuring.

Some of the variables, we will call “external variables”, in our system will directly correspond to measurements
of external observables. For example, think of a sensory neuron in a human body that fires in response to heat [trp,
1]. The firing state of this neuron is directly linked to the temperature of the external environment. Conversely,
some of the variables in our system will be “internal variables”. For example, think of an interneuron, which fires
in response to other neurons in the body, but not in response to external stimuli [interneuron, 1]. These internal
variables are necessary for predicting the external variables, thus they are included in our system. We will make no
distinction between internal and external variables in our system.

Let us now assume that all the variables in the system are binary random variables. Let there be M binary
variables, labelled b1, b2, . . . , bM , and let b′1:M be the grouping of all variables. At first, it may seem that by
considering only binary random variables, we limit the systems that we can look at, however, when we remember
that all measurements will have finite precision we can safely assume that all measurements can be converted
into sets of binary random variables. For example, a variable measuring temperature to 32 bit precision, can be
decomposed into 32 separate binary variables.

Lastly, regarding the binary variables, we will use a convention where the possible outcomes of the binary
variables are −1 and 1, like those we experience in quantum spin mechanics, instead of 0 and 1 like we use in
traditional probability theory. This choice does not lose generality, as we can always convert back to the probability
convention via b → (b+ 1)/2.

Next, let us introduce memory into our system. Let the prime symbol (′) indicate past measurement. So
dividing the measurement process into discrete time steps, bn represents the measurement of the nth variable at
some time level and b′n represents the measurement of the same variable at the previous time step. We will only
consider two time steps at a time, with the hope that the states of internal variables will be able to retain information
for longer periods.

We now need to define the network of relationships between variables. In the most general case, a fully connected
network, every variable b1:M is conditioned on the variables at the previous time step, b′1:M . Figure 1 panel A shows
a graphical representation of this network. Notice that every variable at the first time step, b′i, is connected to
every variable at the subsequent time step, bj . Notice that this fully connected pattern continues in the future and
past, represented by greyed out nodes.

We can write out the probability of the future states, b1:M , given the past states, b′1:M according to a Boltzmann
distribution

P (bi|b′1:M) =
1

Zi
exp (−βU(bi, b

′
1:M)) (1)

Zi =exp (−βU(+1, b′1:M)) + exp (−βU(−1, b′1:M)) (2)

2

where U is some energy of the state. Taylor expanding the energy to first order, we get

U(bi, b
′
1:M) ≈bi(J0i +

∑
j

Jijb
′
j) (3)

P (bi|b′1:M) ≈ 1

Zi
exp

−βbi(J0i +
∑
j

Jijb
′
j)

 (4)

where β represents an inverse temperature, J0i represents some base energy for the ith variable, Jij represents the
interaction energies.

Note that the connection strengths between nodes may change over time, however, we will assume that if the
connection strengths change over time, they do so slowly enough that to some certainty, the connection strength
between b′i and bj will be approximately equal to the connection strength between b′′i and b′j .

Equation (4) is effectively a stochastic fully connected binary neural network [1], which has M2+M connections.
WhenM is large, it is prohibitively costly to model this system, thus our next goal is to simplify the graphical model.
We can simplify this graphical model by clustering variables with large coefficients of correlation (see supplementary
section S0.1). In other words, we can replace large clusters of correlated our binary variables in our system with
variables that only encode the sum of the cluster. For example, if b1:K are highly correlated, we may replace them
with

x =

K∑
k=1

bk. (5)

This cluster variable, x, will be distributed around some mean, with variance related to the error of our clustering
process times the number of components in the cluster, which we will discuss in later sections. Note that when
the number of binary variables that make up the cluster is large, then we can approximate cluster variables as
continuous variables. Moving forward, we will use this approximation and treat x as continuously distributed.

Let us proceed by replacing every highly correlated subset of b1:M with such cluster variables. For concreteness,
let us say that there are N such clusters, labelled x1, x2, . . . , xN , and B remaining binary variables, which are not
highly correlated with any of the subsets. Let us use similar notation allowing x1:N to represent the grouping of
the cluster variables and let x′

1:N represent the cluster variables at the previous time step.
After the substitution process laid out above, our new graphical model will look like the one presented in

figure 1 panel B. Here we have N cluster variables and B binary variables. The network is fully connected, with
(N +B)2 + (N +B) parameters. Since M > N +B this new system has exponentially fewer parameters.

We can simplify this graphical model further by considering that highly correlated binary variables have already
been clustered. By definition, this means that the remaining correlations between variables are weak. Thus, we can
ignore connections between binary variables. However, we will keep the connections between clusters, since weak
correlations may be balanced out by the large variance of each xn. This final graphical model is shown in figure 1
panel C, where we see that the clusters are fully connected, but each binary variable, bi is connected only to the
clusters.

We are now ready to construct a model to predict the system. In the next section, we construct a loss function
for the system presented in figure 1 panel C.

2.2 Loss function

In the previous section, we built out a graphical model representing a system of fully connected binary variables
as a set of clusters and sparsely connected binary variables. In this section, we introduce the concept of a model,
which is used to predict the values of the variables in the system. We then construct a loss function for the model.

Consider a single time step. Let us define the ground truth distribution of variables as

P∗ (x1:N , b1:B)

where the star indicates that this is the “real” distribution. Next, we define a model that predicts the values of the
system variables,

P (x1:N , b1:B|Θ)P (Θ)

3

which has two parts: 1) a likelihood, P (x1:N , b1:B|Θ), which gives the probability of the measurements according
to some model parameters, Θ, and 2) a prior, P (Θ),

P (x1:N , b1:B|Θ)

and a prior over model parameters which acts as a regularizer over model parameters. The hope is that the model
will assign probabilities to measurements that are as close as possible to the ground truth distribution. We can
quantify the error of the model using the Kullback-Leibler divergence [1]

KLD =−
∫

dx1:N

∑
b1:B

P∗ (x1:M , b1:B) log

(
P (x1:M , b1:B |Θ)P (Θ)

P∗ (x1:M , b1:B)

)
(6)

=−
∫

dx1:N

∑
b1:B

P∗ (x1:M , b1:B) (log (P (x1:M , b1:B |Θ)P (Θ))− log (P∗ (x1:M , b1:B))) (7)

=−H0 −
∫

dx1:N

∑
b1:B

P∗ (x1:M , b1:B) log (P (x1:M , b1:B |Θ)P (Θ)) (8)

H0 +KLD =−
∫

dx1:N

∑
b1:B

P∗ (x1:M , b1:B) log (P (x1:M , b1:B |Θ)P (Θ)) (9)

where H0 is the intrinsic entropy of the system. Equation (9) states that the average prediction error (defined as the
log probability of the model, which is often called the “surprise” [1]) of our model is equal to the intrinsic entropy
of the system, H0, plus the error (KL Divergence) between our model and the ground truth. Defining loss as

L =H0 +KLD (10)

=−
∫

dx1:N

∑
b1:B

P∗ (x1:M , b1:B) log (P (x1:M , b1:B |Θ)P (Θ)) (11)

we see that minimizing the loss minimizes the prediction error.
One key difference between our loss function, equation (11), and traditional loss terms defined elsewhere [1] is

that we include the prior term as an inseparable part of the model. In later sections we will show that prior will
act as both a regularizer and a momenta term during training, which may be advantageous over other paradigms
in which loss functions, regularizers, and optimizers are defined separately.

We can simplify this loss function further, decomposing it into a loss from the clusters and a loss from the binary
variables,

L =−
∫

dx1:N

∑
b1:B

P∗ (x1:M , b1:B) log (P (x1:M , b1:B |Θ)P (Θ)) (12)

=−
∫

dx1:N

∑
b1:B

P∗ (x1:M , b1:B) log (P (b1:B |x1:M ,Θ)P (x1:M |Θ)P (Θ)) (13)

=−
∫

dx1:N

∑
b1:B

P∗ (x1:M , b1:B) (log (P (b1:B |x1:M ,Θ)) + log (P (x1:M |Θ)) + log (P (Θx))) (14)

=−
∫

dx1:N

∑
b1:B

P∗ (x1:M , b1:B) log (P (b1:B |x1:M ,Θ))−
∫

dx1:NP∗ (x1:M) log (P (x1:M |Θ))− log (P (Θ))

(15)

=−
∫

dx1:N

∑
b1:B

P∗ (x1:M , b1:B) log

(
B∏
i=1

P (bi|x1:M ,Θ)

)
−
∫

dx1:NP∗ (x1:M) log (P (x1:M |Θ))− log (P (Θ))

(16)

=−
B∑
i=1

∫
dx1:N

∑
b1:B

P∗ (x1:M , b1:B) log (P (bi|x1:M ,Θ))−
∫

dx1:NP∗ (x1:M) log (P (x1:M |Θ))− log (P (Θ))

(17)

=−
B∑
i=1

∫
dx1:N

∑
bi

P∗ (bi,x1:M) log (P (bi|x1:M ,Θ))−
∫

dx1:NP∗ (x1:M) log (P (x1:M |Θ))− log (P (Θ)) (18)

4

Where we have used the fact that binary variables are independent in the model to separate the binary variable
terms. Finally by splitting Θ into parameters which affect only the binary variables, Θb, and parameters which
only affect the clusters, Θx, we get

L =Lb + Lx (19)

Lb =− log (P (Θb))−
B∑
i=1

∫
dx1:NP∗ (x1:M)

∑
bi

P∗ (bi|x1:M) log (P (bi|x1:M ,Θb)) (20)

Lx =− log (P (Θx))−
∫

dx1:NP∗ (x1:M) log (P (x1:M |Θ)) (21)

where we have successfully split the loss into two parts, one governing binary variables and one governing cluster
variables.

Here we have defined probability distributions over the system variables and our model then constructed a
loss function governing prediction error. We have not yet defined the architecture of the model, nor what the
parameters of the model represent. In the next sections, we will choose a model architecture that is explicitly
designed to minimize this loss. We will start with the loss over cluster variables, then move onto binary variables.

2.3 Model over cluster variables

Our goal now is to start designing the architecture of our model. In this section, we will design the model architecture
for the distribution over cluster variables, with the goal of minimizing the error defined in equation (21). Because a
Gaussian distribution can be thought of as a second order approximation to arbitrary distributions in log space [1],
we will use it as the functional form for our model distribution

P (x1:M |Θx) ≈N (x1:M ;0,K) (22)

=
(
(2π)M |K|

)− 1
2 exp

(
−1

2
x1:MK−1x1:M

)
(23)

where K is the covariance of the distribution. Notice that for simplicity we have set the mean of the distribution
to zero, which can be interpreted as implicitly shifting the measurements by x1:M → x1:M − µ1:M where µ1:M is
the mean of the raw model distribution. We will eventually marginalize over measurements, meaning that this shift
will have no effect on the final result, but simplifies the derivation.

Plugging in equation (23) into the loss function, equation (21), we get

Lx =− log (P (Θx))−
∫

dx1:NP∗ (x1:M) log

((
(2π)M |K|

)− 1
2 exp

(
−1

2
x1:MK−1x1:M

))
(24)

=− log (P (Θx))−
∫

dx1:NP∗ (x1:M)

(
−1

2
log
(
(2π)M |K|

)
− 1

2
x1:MK−1x1:M

)
(25)

=− log (P (Θx)) +
M

2
log (2π) +

1

2
log (|K|) + 1

2

∫
dx1:NP∗ (x1:M)x1:MK−1x1:M . (26)

Let us now define exactly what the model parameters, Θx, are and how they relate to the covariance matrix,
K. A covariance matrix has two parts: 1) the variance of each variable along the diagonal, and 2) the covariance
between variables on the off diagonals [1]. Because our goal is to map inference to physics, we will assign physics
inspired labels to each part of the covariance.

Remember that we already know from section 2.1 that each cluster, xi, is the sum of binary variables, meaning
that each xi will be binomial distributed, which has variance proportional to the number of components in the
cluster. Therefore, we expect that the variance of xi will be proportional to the size of the cluster. Let us define,

Var [xi] =mi (27)

which we will call the “mass” of the cluster, which has the dual purpose of quantifying both the variance of the
variable and the number of binary variables that make up the cluster.

Moving onto the covariance, we notice that covariance encodes two things: the magnitude of correlation and
the sign of the correlation. Taking inspiration from physics, we will treat the sign of the covariance as a product of
charges, and the strenth of the correlation as an inverse distance

Cov [xi, xj] =
qiqj

|r⃗i − r⃗j |
(28)

5

where qi and qj are the charges of variables and r⃗i and r⃗j are the positions of the variables. Through thought
experiments like “if A is correlated with B and B is correlated with C” and “if A is anti-correlated with B and B
is anti-correlated with C then A is correlated with C” we can conclude that charges can be used to keep track of
the sign of correlation. As for positions, inverse distance makes sense because typically we expect objects that are
close together to be more correlated than objects that are far apart, an assumption already used in many regression
methods [1]. Let us start by assuming that the positions of each variable span a space with D dimensions where
D is large enough that we can effectively tune charges and positions of each variable to match any arbitrary set of
covariances. We will later show that we we can constrain the number of dimensions to 3 when we define a covariance
between cluster variables and binary variables.

All together, plugging our definitions, equations 27 and 28, into the covariance matrix, K, we get

K =

m1

q1q2
|r⃗1−r⃗2|

q1q3
|r⃗1−r⃗3| . . .

q1q2
|r⃗1−r⃗2| m2

q2q3
|r⃗2−r⃗3| . . .

q1q3
|r⃗1−r⃗3|

q2q3
|r⃗2−r⃗3| m3 . . .

...
...

...
. . .

 (29)

where the pattern continues along the whole N by N matrix. The inverse covariance matrix, K−1, can be calculated
using a Taylor expansion where we separate the covariance into diagonal and off-diagonal components

K =Kdiag +Koff (30)

K−1 =(Kdiag +Koff)
−1 (31)

≈K−1
diag −K−1

diagKoffK
−1
diag (32)

=

1

m1

−q1q2
m1m2|r⃗1−r⃗2|

−q1q3
m1m3|r⃗1−r⃗3| . . .

−q1q2
m1m2|r⃗1−r⃗2|

1
m2

−q2q3
m2m3|r⃗2−r⃗3| . . .

−q1q3
m1m3|r⃗1−r⃗3|

−q2q3
m2m3|r⃗2−r⃗3|

1
m3

. . .
...

...
...

. . .

 (33)

where we have used the fact that magnitude of covariance between clusters is defined to be small in our approxi-
mation, in other words, we drop all 1

r2 terms. We can use our inverse covariance matrix to simplify the expression
x1:MK−1x1:M which shows up in the loss function, equation (26),∫

dx1:NP∗ (x1:M)x1:MK−1x1:M =

∫
dx1:NP∗ (x1:M)

∑
i

∑
j

xixj(K
−1)ij (34)

=

∫
dx1:NP∗ (x1:M)

∑
i

x2
i (K

−1)ii +
∑
j ̸=i

xixj(K
−1)ij

 (35)

=

∫
dx1:NP∗ (x1:M)

∑
i

 x2
i

mi
−
∑
j ̸=i

xixj

mimj

qiqj
|r⃗i − r⃗j |

 (36)

=
∑
i

E
[
x2
i

]
mi

−
∑
j ̸=i

E [xixj]

mimj

qiqj
|r⃗i − r⃗j |

 (37)

where E [. . .] is the expectation value taken over the ground truth distribution. Finally, we can calculate the

6

determinant by again separating the covariance matrix into diagonal and off diagonal components,

|K| =|Kdiag +Koff| (38)

=|Kdiag||I +K−1
diagKoff| (39)

=|Kdiag| exp(Trace(log(I +K−1
diagKoff))) (40)

≈|Kdiag| exp(Trace(K−1
diagKoff)) (41)

=|Kdiag| exp(0) (42)

=|Kdiag| (43)

=

N∏
i=1

mi (44)

where we have used the identity log(I +A) ≈ A.
It is now clear that the parameters of our model, Θx, are the positions of the variables. Let r⃗1:M be the grouping

of positions defined in equation (28) and let r
(d)
1:M be the grouping of all positions along the dth dimension. We

must choose a prior over these positions. Let us choose

P (Θx) =P (r⃗1:M) (45)

=

D∏
d=1

N
(
r
(d)
1:M ; r′

(d)
1:M ,K−1

)
(46)

where we break up the prior into D separate multivariate Guassians over positions along each dimension with

mean equal to the position at the previous time step, r⃗′1:M and covariance equal to the inverse covariance of the
likelihood. Let us now simplify the negative log prior which shows up int the loss function, equation (26),

− log (P (Θx)) =− log

(
D∏

d=1

N
(
r
(d)
1:M ; r′

(d)
1:M ,K−1

))
(47)

=−
D∑

d=1

log
(
(2π)M |K−1|− 1

2

)
exp

(
−1

2

(
r
(d)
1:M − r′

(d)
1:M

)T
K
(
r
(d)
1:M − r′

(d)
1:M

))
(48)

=
D

2
log
(
(2π)M |K|−1

)
+

1

2

D∑
d=1

v
(d)
1:M

T
Kv

(d)
1:M (49)

=
DM

2
log (2π)− D

2
log (|K|) + 1

2

D∑
d=1

v
(d)
1:M

T
Kv

(d)
1:M (50)

where we have defined a “velocity”, v⃗1:M = r⃗1:M − r⃗′1:M and have used the identity |A−1| = |A|−1. We can

7

simplify the term on the far right by plugging in our covariance

1

2

D∑
d=1

v
(d)
1:M

T
Kv

(d)
1:M =

1

2

D∑
d=1

∑
i

∑
j

v
(d)
i v

(d)
j (K)ij

 (51)

=
1

2

D∑
d=1

∑
i

miv
(d)
i

2
+
∑
j ̸=i

v
(d)
i v

(d)
j

qiqj
|r⃗i − r⃗j |

 (52)

=
1

2

∑
i

miv
2
i +

∑
j ̸=i

v⃗i · v⃗j
qiqj

|r⃗i − r⃗j |

 (53)

=
∑
i

1

2mi

(mivi)
2 + qimiv⃗i ·

∑
j ̸=i

qj v⃗j
|r⃗i − r⃗j |

 (54)

=
∑
i

1

2mi

(
p2i + qip⃗i · A⃗i

)
(55)

=
∑
i

1

2mi

(
p2i + qip⃗i · A⃗i + q2iA

2
i − q2iA

2
i

)
(56)

≈−
∑
i

1

2mi

(
p2i + qip⃗i · A⃗i + q2iA

2
i

)
(57)

=
∑
i

1

2mi

(
p2i + qip⃗i · A⃗i + q2iA

2
i − q2iA

2
i

)
(58)

≈
∑
i

1

2mi

(
p⃗i + qiA⃗i

)2
(59)

where we have defined a “momentum”, p⃗i = miv⃗i, and a “vector potential”, A⃗i =
∑

j ̸=i
qj v⃗j

|r⃗i−r⃗j | , then dropped all
1
r2 terms. An attentive reader will notice that the final result in equation (59) is equal to the kinetic energy from
a system of charged particles in a vacuum, including the momentum terms and vector potential terms. This is, of
course, by design.

Plugging this all together into the loss function, equation (26) we get

Lx =− log (P (Θx)) +
M

2
log (2π) +

1

2
log (|K|) + 1

2

∫
dx1:NP∗ (x1:M)x1:MK−1x1:M (60)

≈ (D + 1)M

2
log (2π)− (D − 1)

2
log

(∏
i

mi

)
+
∑
i

E
[
x2
i

]
2mi

−
∑
j ̸=i

E [xixj]

2mimj

qiqj
|r⃗i − r⃗j |

+
1

2mi

(
p⃗i + qiA⃗i

)2 .

(61)

Our last simplification will come from an identity

E [xixj] =Cov [xi, xj] + E [xi] E [xj] (62)

where the expectation values are taken over the ground truth distribution. Notice that E [x] is the average error
between our model (where the expected mean is 0) and the ground truth. We expect that this error is proportional
to the size of the cluster,

E [x] =ϵmi (63)

where ϵ is expected error per binary variable in the cluster. Note that Cov [xi, xj] will be much smaller than
E [xi] E [xj] which scales with the variance squared, therefore we can approximate

E [xixj] ≈ϵ2mimj . (64)

8

Plugging this in we get

Lx =
(D + 1)M

2
log (2π)− (D − 1)

2
log

(∏
i

mi

)
+
∑
i

ϵ2mi

2
−
∑
j ̸=i

ϵ2qiqj
2|r⃗i − r⃗j |

+
1

2mi

(
p⃗i + qiA⃗i

)2 (65)

=
(D + 1)M

2
log (2π)−

∑
i

(
(D − 1)

2
log (mi)−

ϵ2m2
i

2

)
−
∑
i

∑
j ̸=i

ϵ2qiqj
2|r⃗i − r⃗j |

− 1

2mi

(
p⃗i + qiA⃗i

)2 (66)

=C −M−H (67)

C =
(D + 1)M

2
log (2π) (68)

M =
∑
i

(
(D − 1)

2
log (mi)−

ϵ2m2
i

2

)
(69)

H =
∑
i

∑
j ̸=i

ϵ2qiqj
2|r⃗i − r⃗j |

− 1

2mi

(
p⃗i + qiA⃗i

)2 (70)

where we have separated our loss into a constant, C, a mass term, M, and a Hamiltonian, H. If we expect that the
clusters do not change over time, then when the model reaches minimum prediction error, the model parameters
(positions) are allowed to evolve over time only by preserving the Hamiltonian, where the model was carefully
chosen such that the Hamiltonian is equivalent to that of electrodynamics [cite].

In this section, we mapped the dynamics model parameters over cluster variables to electrodynamics. In the
next section we

3 Discussion

...

References

[1] Cite me!!!

9

Supplementary information

S0.1 Clustering correlated variables

Consider two highly correlated variables bi and bj such that

P (bi|bj) ≈δqibi,qjbj (1)

where δbi,bj is the Kronecker delta and the variables qi and qj are the signs of correlation with qiqj = 1 if bi and bj
are correlated and qiqj = −1 if bi and bj are anti-correlated.

The sum of interaction terms (see equation (3)) of highly correlated variables is approximately equal to the
average of the signed interaction energies times the sum of the variables,

E [Jibi + Jjbj] =
∑
bi

∑
bj

(Jibi + Jjbj)P (bi, bj)

=
∑
bi

∑
bj

(Jibi + Jjbj)P (bi|bj)P (bj)

≈
∑
bi

∑
bj

(Jibi + Jjbj)δqibi,qjbjP (bj)

=
∑
bi

∑
bj

(Jibi + Jjbj)δbi,qiqjbjP (bj)

=
∑
bj

(Jiqiqjbj + Jjbj)P (bj)

=(Jiqiqj + Jj)
∑
bj

bjP (bj)

=(Jiqiqj + Jj)
∑
bj

bj + bj
2

P (bj)

=
Jiqiqj + Jj

2

∑
bi

∑
bj

(bi + bj)δbi,bjP (bj)

≈Jiqiqj + Jj
2

∑
bi

∑
bj

(bi + bj)P (bi|bj)P (bj)

=
Jiqiqj + Jj

2

∑
bi

∑
bj

(bi + bj)P (bi, bj)

=
Jiqiqj + Jj

2
E [bi + bj]

=qj
Jiqi + Jjqj

2
E [bi + bj]

where in the last step we have used an identity qj =
1
qj

since it qj may only be 1 or −1. In general, we can cluster

any K highly correlated and anti-correlated variables to get

E

[∑
k

Jkbk

]
≈qrf

∑
k qkJkbk
K

E

[∑
k

bk

]
. (2)

where qrf is some reference charge. Note that we will not use equation (2) directly in this work. We merely are
interested in demonstrating that sets of highly correlated binary variables may be replaced with variables that only
consider the sum of the set.

10

	Introduction
	Methods
	Graphical model
	Loss function
	Model over cluster variables

	Discussion
	Clustering correlated variables

